Hierarchical clustering methods in a task to find abnormal observations based on groups with broken symmetry
https://doi.org/10.22394/1726-1139-2020-5-116-127
Abstract
About the Authors
A. N. KislyakovRussian Federation
Associate Professor of the Chair of Information Technology of Vladimir Branch of RANEPA, PhD in Technical Science
Vladimir
S. V. Polyakov
Russian Federation
Associate Professor of the Chair of Information Technology of Vladimir Branch of RANEPA, PhD in Technical Science
Vladimir
References
1. Barsky M. E., Shikov A. N. Research of the algorithm for finding anomalies of isolation forest // Fundamental and applied scientific research: topical issues, achievements and innovations. collection of articles of the XXIII International Scientific and Practical Conference on May 5, 2019 Penza: Science and Enlightenment (IP Gulyaev G. Y.), 2019. P. 113–117. (In rus)
2. Belotserkovskaya M. G. Clustering of client base of loyalty program participants // Moscow Economic Journal [Moskovskii ekonomicheskii zhurnal]. 2017. № 2. P. 112–119. (In rus)
3. Galyamova A. F., Tarhov S. V. Management of interaction with clients of commercial organization on the basis of methods of segmentation and clustering of client base // Journal of USATU [Vestnik UGATU]. 2014. V. 18, No. 4 (65). P. 149–156. (In rus)
4. Kislyakov A. N. Intelligent analysis of consumer demand in conditions of information asymmetry // Modern economy: problems and solutions [Sovremennaya ekonomika: problemy i resheniya]. 2019. № 10 (118). P. 8–17. (In rus)
5. Kislyakov A. N. Tikhonyuk N. E. Model of homogeneous market pricing taking into account asymmetric information // Innovative development of the economy [Innovatsionnoe razvitie ekonomiki]. 2019. № 1. P. 93–100. (In rus)
6. Kislyakov A. N. Methods and Tools of Data Analysis in Economy and Management: Educational and Methodological Manual. Vladimir : RANEPA Vladimir branch, 2019. 161 p. (In rus)
7. Polyakov S. V., Kislyakov A. N. Basics of mathematical modeling of socio-economic processes: educational and methodological manual. Vladimir : RANEPA Vladimir branch, 2017, 269 p. (In rus)
8. Rau V. G., Kislyakov A. N., Tikhonyuk N. E., Rau T. F. Principle of violation of asymmetry in models of economic systems development experience and problems // Regional economy: experience and problems. Materials of the XI International Scientific and Practical Conference (Gutman Readings) on May 15, 2018 / under general ed. of A. I. Novikov and A. E. Illarionov. Vladimir: RANEPA Vladimir branch, 2018. P. 201–211. (In rus)
9. Rau V. G., Polyakov S. V., Rau T. F., Firtsov I. V., Togunov I. A. Some features of using groups of broken symmetry to “visualize” processes in natural, “living” and socio-economic systems // Regional economy: experience and problems. Materials of the XII International Scientific and Practical Conference (Gutman Readings) May 15, 2019 / under the general ed. of A. I. Novikov and A. E. Illarionov. Vladimir: RANEPA Vladimir branch, 2019. P. 111–119. (In rus)
10. Tikhonyuk N. E., Kislyakov A. N. Economic models of work with asymmetry of information: evolution of approaches // Regional economy: experience and problems. Materials of the XI International Scientific and Practical Conference (Gutman Readings) on May 15, 2018 /under general ed. of A. I. Novikov and A. E. Illarionov. Vladimir : RANEPA Vladimir branch, 2018. P. 236–244. (In rus)
11. Yakimov V. N., Shurganova G. V., Cherepennikov V. V., Kudrin I. A., Ilin M. Y. Methods of comparative assessment of results of cluster analysis of hydrobiocenosis structure (on the example of zooplankton of Linda River of Nizhny Novgorod region) // Biology of internal waters [Biologiya vnutrennikh vod]. 2016. № 2. P. 94–103. (In rus)
12. Alboukadel K. Practical Guide to Cluster Analysis in R. Unsupervised Machine Learning (Multivariate Analysis). Vol. 1. 1st ed. / Publisher: CreateSpace Independent Publishing Platform, 2017.
13. Murtagh F., Contreras P. Methods of Hierarchical Clustering // Computing Research Repository — CORR, 2011.
14. Nielsen F. Introduction to HPC with MPI for Data Science // Springer International Publishing, 2016.
15. Gareth J., Witten D., Hastie T., Tibshirani R. An Introduction to Statistical Learning with Applications in R / Publisher: Springer, 2013.
16. Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Second Edition. Springer, 2017.
17. Tripathi Sh., Bhardwaj A., Poovammal E. Approaches to Clustering in Customer Segmentation // International Journal of Engineering &Technology, 2018, N 7 (3.12). P. 802–807.
Review
For citations:
Kislyakov A.N., Polyakov S.V. Hierarchical clustering methods in a task to find abnormal observations based on groups with broken symmetry. Administrative Consulting. 2020;(5):116-127. (In Russ.) https://doi.org/10.22394/1726-1139-2020-5-116-127