Analysis of the Sequence of Risk States in the Implementation of Information Projects
https://doi.org/10.22394/1726-1139-2021-4-159-173
Abstract
The article deals with the issues of risk management of information projects. We propose not a deductive approach traditionally used in risk analysis, based on knowledge of the main provisions and their concretization in a real situation, but an inductive approach that requires data accumula- tion and the construction of training data sets as a result of a retrospective analysis of the progress and implementation of individual projects. It is proposed to use methods of trajectory analysis of sequences of events, each of which characterizes the state of risk of project implementation. To test this approach, random sequences of risk events are generated and data analysis methods are applied to these sequences.
About the Author
P. V. NaumovRussian Federation
Pavel V. Naumov, Postgraduate Student
St. Petersburg
References
1. Biryukova S. Sequence analysis in R: TraMineR [Electronic resource]. M.: HSE, 2014. URL: https://www.hse.ru (access date: 02.01.2021). (In Rus).
2. Gorbach A. N., Zeitlin N. A. Purchasing behavior: analysis of spontaneous sequences and regression models in marketing research. Kiev: Education of Ukraine, 2011. 220 p. (In Rus).
3. Katalevsky D. Yu. Fundamentals of simulation modeling and system analysis in management: tutorial. M.: Publishing House of Moscow University, 2011. (In Rus).
4. Kucherenko D. V., Matveev A. V. Analysis of the structure of design organizations of state information systems of executive authorities of St. Petersburg // Materials of the II International Scientific and Practical Conference «Topical Theoretical and Applied Issues of Management of Socio-Economic Systems». Moscow, December 10-11, 2020. M.: Institute for the Development of Vocational Education, 2020. P. 270–274. (In Rus).
5. Levenstein V. I. Binary codes with correction of fallout, insertions and substitutions of symbols // Reports of Academy of Sciences of the USSR [Doklady Akademii Nauk SSSR]. 1965. N 4. P. 845–848. (In Rus).
6. Mastitsky S. E., Shitikov V. K. Classification, regression and other Data Mining algorithms using R [Electronic resource]. URL https://github.com/ranalytics/data-mining (access date: 02.01.2021). (In Rus).
7. Naumov V. N., Kucherenko D. V. Planning labor costs for the creation and development of state information systems and their functional software complexes // Administrative consulting [Upravlencheskoe konsul’tirovanie]. 2017. N 6. P. 140–154. (In Rus).
8. Naumov V. N., Naumov P. V. Forecasting risks of information systems design // Automation of management processes [Avtomatizatsiya protsessov upravleniya]. 2019. N 4. P. 34–44. (In Rus).
9. Pavlov A. N. Effective project management based on the PMI PMBOK 6 Edition standard. M.: Knowledge Laboratory, 2019. (In Rus).
10. Forrester J. World dynamics. St. Petersburg: Terra Fantastica, 2003. (In Rus).
11. Forrester J. Fundamentals of cybernetics enterprise (industrial dynamics). M.: Progress, 1971. (In Rus).
12. PMBOK. Guide to Project Management Knowledge. 6th ed. M.: Olympus business, 2016. (In Rus).
13. Buettner D. Dynamic COQUALMO: Defect profiling over development cycles [Electronic resource] // Conference: Proceedings of the International Conference on Software Process: Trustworthy Software Development Processes. URL: https://www.researchgate.net/publication/225240099_Dynamic_COQUALMO_Defect_profiling_over_development_cycles./ (дата обращения: 07.01.2021).
14. Chulani S., Boehm D. Modeling Software Defect Introduction and Removal: COQUALMO (COnstructive QUALity MOdel) [Electronic resource]. URL: https://www.researchgate.net/publication/228778578_Modeling_software_defect_introduction_and_roval_COQUALMO_COnstructive_QUALity_MOdel/ (дата обращения: 06.01.2021).
15. Gabadinho A., Ritschard G., Studer M., Müller N. S. Mining Sequence Data in R with the TraMineR package: A user’s guide. Department of Econometrics and Laboratory of Demography, University of Geneva [Electronic resource]. URL: https://www.researchgate.net/publication/342889620_Mining_sequence_data_in_R_with_the_TraMineR_package_A_user’s_ guide/ (дата обращения 5.01.2021).
16. Gabadinho A., Ritschard G., Müller N. S., Studer M. Analyzing and Visualizing State Sequences in R with TraMineR [Electronic resource] // Journal of Statistical Software 2011. № 40 (4). P. 1–37.
17. Mayer D. The Complexity of Some Problems on Subsequences and Super sequences // Journal of the ACM. Vol. 25, Iss. 2. April 1978. P. 322–336.
18. Sequence Analysis in Demographic Research Special Issue on Longitudinal Methodology [Electronic resource] // Canadian Studies in Population. 2001. Vol. 28(2). P. 439–458.
19. Software Project Risk Assessment and Efforts Contingency Model based on COCOMO Cost Factor COCOMO. [Electronic resource]. URL: https://www.researchgate.net/publication/236679817 (дата обращения: 28.09.2019).
20. Studer M., Ritschard G. A Comparative Review of Sequence Dissimilarity Measures [Electronic resource] // LIVES Working Papers, 33. NCCR LIVES, Switzerland, 2014. URL: https://www.lives-nccr.ch/sites/default/files/pdf/publication/33_lives_wp_studer_sequencedissmeasures.pdf (дата обращения: 03.01.2020).
21. Studer M., Ritschard G. What matters in differences between life trajectories: A comparative review of sequence dissimilarity measures // Journal of the Royal Statistical Society, Series A. 2016. Vol. 179, Iss. 2. P. 481–511.
22. Valerdi R., Boehm Barry W. COSYSMO: A system engineering cost model [Electronic resource]. URL: http://csse.usc.edu/TECHRPTS/2010/usc-csse-2010-508/usc-csse-2010-508.pdf (дата обращения: 20.09.2019).
23. Valerdi R., John E. Gaffney Jr. Reducing Risk and Uncertainty in COSYSMO Size and Cost Drivers: Some Techniques for Enhancing Accuracy. 2007. [Electronic resource]. URL: https://www.researchgate.net/publication/229034929Reducing_Risk_and_Uncertainty_in_COSYSMO_Size_and_Cost_ Drivers_Some_Techniques_for_Enhancing_Accuracy (дата обращения: 28.09.2019).
24. Wagner R. A., Fischer M. J. The string-to-string correction problem // Journal of the ACM. 1974. Vol. 21. Iss. 1. P. 168–173.
Review
For citations:
Naumov P.V. Analysis of the Sequence of Risk States in the Implementation of Information Projects. Administrative Consulting. 2021;(4):159-173. (In Russ.) https://doi.org/10.22394/1726-1139-2021-4-159-173