AI-Driven Public Services: A Taxonomy of Accountability and Sovereign Artificial Intelligence (AI)
EDN: CLJCAK
Abstract
This study examines the institutional and technological challenges of integrating artificial intelligence (AI) systems into public administration and governmental services, focusing on the taxonomy of algorithmic roles in decision-making, the balance of interests in cooperation with commercial AI providers and infrastructure actors, and the safeguarding of national technological sovereignty. A qualitative interdisciplinary approach is applied, combining regulatory and legal analysis, thematic examination of empirical cases across different countries, and theoretical synthesis. Data were collected from official documents, peer-reviewed publications, and news sources, using snowball sampling for case selection and iterative coding for analytical categorization. The research develops a six-tier pyramidal model of accountability distribution according to the degree of algorithmic autonomy in decision-making chains: from full delegation («AI as Captain»), provision of ready-made solutions for human approval («AI as Navigator»), configuration of option sets («AI as Adviser»), environmental analysis with trigger signaling («AI as Observer»), execution of labor-intensive tasks under operator supervision («AI as Workforce»), to routine operational support without decision-making capacity («AI as Routine Assistant»). The model is mapped against risk gradations (high, limited, minimal) to assess error consequences.
The findings reveal the dilemma of public-private partnerships, which facilitate access to innovation but simultaneously reinforce dependence and systemic vulnerabilities. The study also substantiates the role of sovereign AI as a strategic response to these risks. For effective integration of AI into governmental services, it recommends mandatory classification of systems by autonomy and criticality levels. The proposed six-level taxonomy enables a differentiated approach to accountability allocation, reducing institutional gaps and risks of bias, while enhancing resilience and strategic security.
About the Author
А. А. НосиковRussian Federation
Andrey A. Nosikov, Ph.D. in Political Sciences, Senior Lecturer of Department of Public Relations in Politics and Public Administration
Saint Petersburg
References
1. Al-Suqri M., Niaz H. A comparative analysis of information and artificial intelligence toward national security // Ieee Access. 2022. Vol. 10. P. 64420–64434. DOI 10.1109/access.2022.3183642.
2. Barth T. J., Arnold E. Artificial intelligence and administrative discretion: Implications for public administration // The American Review of Public Administration. 1999. Vol. 29. N 4. P. 332–351. DOI 10.1177/02750749922064463.
3. Braun V., Clarke V. Using thematic analysis in psychology // Qualitative Research in Psychology. 2006. Vol. 3, N 2. P. 77–101.
4. Chia H., et al. Autonomous AI: what does autonomy mean in relation to persons or machines? // Law, Innovation and Technology. 2023. Vol. 15. N 2. P. 390–410. DOI 10.1080/17579961.2023.2245679.
5. Criado J. I., Sandoval-Almazбn R., Gil-Garcia J. R. Artificial intelligence and public administration: Understanding actors, governance, and policy from micro, meso, and macro perspectives // Public Policy and Administration. 2025. Vol. 40. N 2. P. 173–184. DOI 10.1177/09520767241272921.
6. Dale R. Sovereign AI in 2025 // Natural Language Processing. 2025. P. 1–10.
7. Datta K. AI-driven public administration: Opportunities, challenges, and ethical considerations // The Social Science Review. 2024. Vol. 2. N 6. P. 134–139. DOI 10.70096/tssr.240206023.
8. de Souza E. A. The Transformation of Public Administration through Artificial Intelligence // Rev. fisio&terapia. 2025. Vol. 29. N 145. P. 44–45.
9. illon S., Dillon M. Artificial intelligence and the sovereign-governance game. In book: AI Narratives. 2020. P. 333–356. DOI 10.1093/oso/9780198846666.003.0015.
10. Djeffal C., Siewert M. B., Wurster S. Role of the state and responsibility in governing artificial intelligence: a comparative analysis of AI strategies // Journal of European Public Policy. 2022. Vol. 29. N 11. P. 1799–1821. DOI 10.1080/13501763.2022.2094987.
11. Filgueiras F. Designing artificial intelligence policy: comparing design spaces in Latin America // Latin American Policy. 2023. Vol. 14. N 1. P. 5–21. DOI 10.1111/lamp.12282.
12. Henman P. Improving public services using artificial intelligence: possibilities, pitfalls, governance // Asia Pacific Journal of Public Administration. 2020. Vol. 42. N 4. P. 209–221. DOI 10. 1080/23276665.2020.1816188.
13. Hou Y., Wang Z., Yang Z., Zhai E. Artificial intelligence technology pushes forward the modernization of firepower weapon equipmen // Proc. SPIE 12720, 2022 Workshop on Electronics Communication Engineering, 127200F (28 June 2023). https://doi.org/10.1117/12.2668167.
14. Khanal S., Zhang H., Taeihagh A. Why and how is the power of Big Tech increasing in the policy process? The case of generative AI // Policy and Society. 2025. Vol. 44, N 1. P. 52–69. DOI 10.1093/polsoc/puae012.
15. Kurki V. The legal personhood of artificial intelligences. In book: A Theory of Legal Personhood. 2019. P. 175–190. DOI 10.1093/oso/9780198844037.003.0007.
16. Li C. AI-Driven Governance: Enhancing Transparency and Accountability in Public Administration // Digital Society & Virtual Governance. 2025. Vol. 1. N 1. P. 1–16. DOI 10.6914/dsvg.010101.
17. Liu L. X., Clegg S., Pollack J. The Effect of Public–Private Partnerships on Innovation in Infrastructure Delivery // Project Management Journal. 2024. Vol. 55. N 1. P. 31–49. DOI 10.1177/87569728231189989.
18. Madan R. Artificial intelligence diffusion in public administration // Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society. 2022. P. 903. DOI 10.1145/3514094.3539529.
19. Ortega-Fernбndez A., Martнn-Rojas R., Garcнa-Morales V. J. Artificial Intelligence in the Urban Environment: Smart Cities as Models for Developing Innovation and Sustainability // Sustainability. 2020. Vol. 12. N 19. P. 7860. DOI 10.3390/SU12197860.
20. Prasad K. R., Karanam S. R., Ganesh D., Liyakat K. K. S., Talasila V., Purushotham P. AI in public-private partnership for IT infrastructure development // The Journal of High Technology Management Research. 2024. Vol. 35. N 1. P. 100496. DOI 10.1016/j.hitech.2024.100496.
21. Pulijala S. Artificial intelligence in governance: opportunities, challenges, and ethical implications for public administration // International Journal for Multidisciplinary Research (IJFMR). 2024. Vol. 6. N 6. P. 1–10. DOI 10.36948/ijfmr.2024.v06i06.29990.
22. Roberts H. Digital sovereignty and artificial intelligence: a normative approach // Ethics Inf Technol. 2024. Vol. 26. P. 70. DOI 10.1007/s10676-024-09810-5.
23. Sen A. Artificial intelligence and autonomous systems: A legal perspective on granting personhood and implications of such a decision // DME Journal of Law. 2023. Vol. 4. N 01. P. 15–26. DOI 10.53361/dmejl.v4i01.03.
24. Taddeo M., McNeish D., Blanchard A., Edgar E. Ethical principles for artificial intelligence in national defence // Philosophy & Technology. 2021. Vol. 34, N 4. P. 1707–1729. DOI 10.1007/ s13347-021-00482-3.
25. Timmers P. Ethics of AI and Cybersecurity When Sovereignty is at Stake // Minds & Machines. 2019. Vol. 29. P. 635–645. DOI 10.1007/s11023-019-09508-4.
26. Trajkovski G. Bridging the public administration-AI divide: A skills perspective // Public Administration and Developmen. 2024. Vol. 44. N 5. P. 412–426. DOI 10.1002/pad.2061.
27. van Noordt C., Tangi L. The dynamics of AI capability and its influence on public value creation of AI within public administration // Government Information Quarterly. 2023. Vol. 40. N 4. P. 101860. DOI 10.1016/j.giq.2023.101860.
28. Vatamanu A. F., Tofan M. Integrating artificial intelligence into public administration: Challenges and vulnerabilities // Administrative Sciences. 2025. Vol. 15. N 4. P. 149.
29. Webster J., Watson R. Analyzing the Past to Prepare for the Future: Writing a Literature Review // MIS Quarterly. 2002. Vol. 26. N 2. P. xiii–xxiii.
30. Zhang H., Khanal S., Taeihagh A. Public-Private Powerplays in Generative AI Era: Balancing Big Tech Regulation Amidst Global AI Race // Digital Government: Research and Practice. 2025. Vol. 6. N 2. P. 1–11. DOI 10.1145/3664824.
Review
For citations:
А.А. AI-Driven Public Services: A Taxonomy of Accountability and Sovereign Artificial Intelligence (AI). Administrative Consulting. 2025;(5):65–76. (In Russ.) EDN: CLJCAK
































