Preview

Administrative Consulting

Advanced search

Application of Artificial Intelligence in Business Planning

EDN: DCSNQU

Abstract

The paper presents an innovative method of business planning using artificial intelligence technology. In rapidly changing conditions, the possibility of reliable forecasting and planning with an error of less than 10% is in high demand. The introduction of artificial intelligence technology and automation of analysis and planning processes allows us to create a completely new dynamic multi-agent model of financial business planning that quickly responds to changes in external macroeconomic factors and reduces the risk of human factor influence, which became the result of the study. Having set the goal of developing a new, relevant, modern and highly accurate technological approach to business planning, the authors studied a number of modern scientific studies on the introduction of artificial intelligence in the processes of financial planning and forecasting, systematized them and identified interesting and practically implementable ideas. As a result, an approach was proposed that allows for fairly flexible and quickly implemented business planning, showing a highly reliable result in a short period and implementing the possibility of promptly changing the parameters of the company's activities. However, its implementation requires modification of business planning processes and implementation of an autonomous multi-agent system, which are also developed and proposed in the study. The article will be of interest to practicing economists and business representatives involved in business planning, as well as to scientists and students involved in projects to stimulate entrepreneurial activity. 

About the Authors

Yu. A. Rakovskaya
Research and Development Center of the Corporate and Investment Division of Sber in St. Petersburg
Russian Federation

St. Petersburg



M. N. Koniagina
Russian Presidential Academy of National Economy and Public Administration (North-West Institute of Management of RANEPA)
Russian Federation

Saint Petersburg



References

1. Adamanova Z. O., Skaranik S. S. Iskusstvennyye neyronnyye seti v prognozirovanii tendentsiy ekonomicheskogo rosta // Uchenyye zapiski Krymskogo inzhenerno-pedagogicheskogo universiteta. 2024. № 2 (84). S. 41-47. (In Russ.).

2. Bobrysheva V. Ye., Magda A. V., Kosnikov S. N. Metody iskusstvennogo intellekta v ekonomicheskom analize // Ekonomika i predprinimatel’stvo. 2023. № 9 (158). S. 1046-1049. DOI 10.34925/ EIP.2023.158.09.203. (In Russ.).

3. Dzhavadova A. S. Iskusstvennyy intellekt v upravlenii agroriskami: preimushchestva i ugrozy // Nanotekhnologii: nauka i proizvodstvo. 2025. № 4. S. 21-24. (In Russ.).

4. Iskusstvennyy intellekt v prognozirovanii stoimosti stroitel’nykh proyektov / Ye. V. Solov’yeva, V. A. Drozdova, YA. V. Krutikova, N. S. Kashin // Ekonomika i predprinimatel’stvo. 2025. № 7 (180). S. 1223-1227. DOI 10.34925/EIP.2025.180.7.218. (In Russ.).

5. Kontseptual’nyye podkhody k sverkhdolgosrochnomu nauchno-tekhnologicheskomu prognozirovaniyu na osnove iskusstvennoy generatsii novykh znaniy / S.S. Golubev, A.M. Gubin, A.I. Ivanus [i dr.] // Innovatsii i investitsii. 2023. № 8. S. 236-239. (In Russ.).

6. Nagayeva Ye. A. Ekonomicheskiy analiz budushchego: kak iskusstvennyy intellekt menyayet podkhody k otsenke i prognozirovaniyu ekonomicheskikh protsessov v organizatsiyakh // Ekonomika i upravleniye: problemy, resheniya. 2025. T. 2. № 7(160). S. 155-162. DOI 10.36871/ ek.up.p.r.2025.07.02.016. (In Russ.).

7. Pavlova S. V., Mustafayeva S. R. Financial planning and analysis as ways to improve analytics assessment // Economic sciences. 2023. No. 223. Pp. 284–289. DOI 10.14451/1.223.284. (In Russ.).

8. Primeneniye metodov iskusstvennogo intellekta v makroekonomicheskom prognozirovanii / S. Ye. Plakhova, YU. B. Melikova, S. G. Rudnev, K. A. Kovaleva // Zhurnal prikladnykh issledovaniy. 2023. № S1. S. 65-72. DOI 10.47576/2949-1878_2023_S1_65. (In Russ.).

9. Pshenichnyy V. M., Ismaylov A. V. Primeneniye iskusstvennogo intellekta v prognozirovanii sprosa na uglevodorody v usloviyakh turbulentnosti energeticheskikh rynkov // Innovatsii i investitsii. 2024. № 11. S. 87-91. (In Russ.).

10. Sopina N. V., Makkayeva R. S. A. Perspektivy vnedreniya neyrosetey i iskusstvennogo intellekta na promyshlennom proizvodstve // Zhurnal monetarnoy ekonomiki i menedzhmenta. 2023. № 3. S. 222-227. DOI 10.26118/2782-4586.2023.78.70.032. (In Russ.).

11. Sorokotyagina V. L. Primeneniye iskusstvennogo intellekta v prognozirovanii nalogovykh postupleniy i avtomatizatsii kontrolya // Nauchnyy zhurnal «Menedzher». 2025. № 3(109). S. 66-76. DOI 10.5281/zenodo.15697243. (In Russ.).

12. Adelakun B. AI-driven financial forecasting: innovations and implications for accounting practices // International Journal of Advanced Economics. 2023. N 5 (9). Р. 323-338. DOI 10.51594/ ijae.v5i9.1231.

13. Balcerzak A. P., Valaskova K. Artificial intelligence: Financial management under pressure of transformative technology // Equilibrium. Quarterly Journal of Economicsand Economic Policy. 2024. N 19 (4). Р. 1127–1137. DOI 10.24136/eq.3394.

14. Bartram S., Branke J., Motahari M. Artificial Intelligence in Asset Management. CFA Institute Research Foundation Literature Reviews. 2020. DOI 10.2139/ssrn.3510343.

15. Foziljonov I., Yuldashev J., Turgunov J., Khujamurodov A., Rozhkova E. AI-Driven Accounting and Sensing Applications for Investment Management // SHS Web of Conferences. 2025. Vol. 216. URL: http://dx.doi.org/10.1051/shsconf/202521601020 (date of the address: 30.08.2025).

16. Kloba L., Kloba V. Implementation of artificial intelligence in marketing strategy of financial services // Green Blue and Digital Economy Journal. 2025. N 6 (2). Р. 1–7. DOI 10.30525/26615169/2025-2-1.

17. Kumar S., Prasad P. AI-Driven Financial Risk Assessment in Microfinance Institutions // International Journal of Science Engineering and Technology. 2025. Vol. 13. Iss. 2. DOI 10.61463/ijset.vol.13. issue2.380.

18. Poshan Kumar Reddy Ponnamreddy. Accelerating GL Account Normalization with Generative AI: A Case Study in Financial Data Transformation // International Journal of Research in Computer Applications and Information Technology. 2025. N 8 (1). Р. 2977–2988. DOI 10.34218/ IJRCAIT_08_01_215.

19. Ramamoorthy L. AI-Powered Infrastructure & Tools for LargeScale Financial Systems: Challenges, Best Practices, and Standardization // International Journal for Multidisciplinary Research. 2025. Vol. 7. Iss. 3 (May-June 2025). DOI 10.36948/ijfmr.2025.v07i03.45728.

20. Rusyn-Hrynyk R., Fedorchak O., Kushnir Yu. Intelligent Forecasting Tools in Enterprise Financial Management: Potential and Limitations // Business Navigator. 2025. January. DOI 10.32782/ business-navigator.80-44.

21. Yao X., Li X., Kumar Mangla S., Song M. Roles of AI: Financing Selection for Regretful SMEs in E-commerce Supply Chains // Transportation Research Part E: Logistics and Transportation Review. 2024. Vol. 189. URL: https://doi.org/10.1016/j.tre.2024.103649.


Review

For citations:


Rakovskaya Yu.A., Koniagina M.N. Application of Artificial Intelligence in Business Planning. Administrative Consulting. 2025;(5):158–169. (In Russ.) EDN: DCSNQU

Views: 10


ISSN 1726-1139 (Print)
ISSN 1816-8590 (Online)